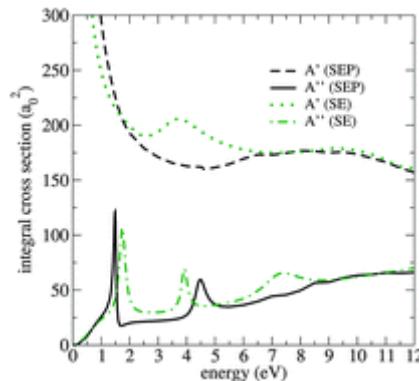


[Log in / register](#)[Issue 26, 2015](#)[Previous](#)[Next](#)

From the journal:

Physical Chemistry Chemical Physics


Negative ion states of 5-bromouracil and 5-iodouracil

[Check for updates](#)[F. Kossoski ^a](#) and [M. T. do N. Varella ^{*a}](#)

Author affiliations

Abstract

The valence anion states of the potential radiosensitisers 5-bromouracil and 5-iodouracil were investigated through elastic scattering calculations. These compounds have rich spectra of negative ion states that trigger off different mechanisms for dissociative electron attachment. For each molecule, we obtained a bound π^* anion, two π^* shape resonances and a low lying σ^* anion state, in addition to a dipole-bound state (the latter was obtained using bound-state techniques). The σ^* anion, formed by electron attachment to an anti-bonding carbon-halogen orbital, was found to have resonant character in 5-bromouracil, and bound-state character in 5-iodouracil. The present calculations place the σ_{CBr}^* resonance around 0.7 eV, considerably below the energy inferred from the electron transmission data (1.3 eV). The signature of this anion state, not evident in the measurements, would be obscured by the large background arising from the dipolar interaction, not by the strong signature of the π_2^* , as presumed. Our results support the π_2^* resonance as a precursor state to dissociative electron attachment around 1.5 eV in both 5-bromouracil and 5-iodouracil, while the interplay among π_1^* , σ^* and dipole-bound states would be expected close to 0 eV. We also discuss the suppression of the hydrogen elimination channels in these species.

[About](#)[Cited by](#)[Related](#)

Buy this article

£42.50*

* Exclusive of taxes

This article contains 8 page(s)

Other ways to access this content

Log in

Using your institution credentials

Sign in

With your membership or subscriber account

Article information

<https://doi.org/10.1039/C5CP01475A>

Article type

Paper

Submitted

12 Mar 2015

Accepted

01 Jun 2015

First published

03 Jun 2015

Citation*Phys. Chem. Chem. Phys.*, 2015, **17**, 17271-17278

BibTex

Go

Author version available[Download author version \(PDF\)](#)**Permissions**[Request permissions](#)**Social activity**

Tweet

Share

Search articles by author F. Kossoski M. T. do N. Varella

Go

Spotlight

Advertisements

› Journals, books & databases

- [Home](#)
- [About us](#)
- [Membership & professional community](#)
- [Campaigning & outreach](#)
- [Journals, books & databases](#)
- [Teaching & learning](#)
- [News & events](#)
- [Locations & contacts](#)
- [Careers](#)
- [Awards & funding](#)
- [Advertise](#)
- [Help & legal](#)
- [Privacy policy](#)
- [Terms & conditions](#)

© Royal Society of Chemistry 2022

Registered charity number: 207890